

Orfelinda Avalo Cortez

Síntese e caracterização de ligas Fe-Ni nanoestruturadas

Tese de Doutorado

Tese apresentada ao Programa de Pós-Graduação em Engenharia Metalúrgica do Departamento de Ciência dos Materiais e Metalurgia da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Metalúrgica e de Materiais.

Orientador: Francisco José Moura

Co-orientador: Eduardo de Albuquerque Brocchi

Orfelinda Avalo Cortez

Síntese e caracterização de ligas Fe-Ni nanoestruturadas

Tese apresentada como requisito parcial para obtenção do grau de Doutor em Engenharia Metalúrgica e de Materiais pelo Programa de Pós-Graduação em Engenharia Metalúrgica do Departamento de Ciência dos Materiais e Metalurgia da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Francisco José Moura

Orientador e Presidente Departamento de Ciência dos Materiais e Metalurgia - PUC-Rio

Prof. Eduardo de Albuquerque Brocchi

Co-Orientador Departamento de Ciência dos Materiais e Metalurgia - PUC-Rio

Prof. Célio Albano da Costa Neto

Universidade Federal do Rio de Janeiro - UFRJ

Prof. Antonio Carlos Oliveira Bruno Pontifícia Universidade Católica do Rio de Janeiro - PUC-Rio

> Prof^a Ana Maria Rocco Universidade Federal do Rio de Janeiro - UFRJ

> > Prof. Roberto Ribeiro Avillez

Departamento de Ciência dos Materiais e Metalurgia - PUC-Rio

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 18 de agosto de 2008

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Orfelinda Avalo Cortez

Graduou-se em Engenharia Metalúrgica na UNI (Universidad Nacional de Ingenieria de Lima -Perú) no ano de 1994. Concluiu o programa de Mestrado do Departamento de Ciências do Materiais e Metalurgia da PUC-Rio, obtendo o título de Mestre em 2002. Ingressou no programa de Doutorado neste mesmo departamento, no ano de 2004.

Ficha Catalográfica

Avalo Cortez, Orfelinda

Síntese e caracterização de ligas Fe-Ni nanoestruturadas / Orfelinda Ávalo Cortez ; orientador: Francisco José Moura ; co-orientador: Eduardo de Albuquerque Brocchi. – 2008.

171 f. : il. ; 30 cm

Tese (Doutorado em Ciência dos Materiais e Metalurgia)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008. Inclui bibliografia

1. Ciência dos Materiais e Metalurgia – Teses. 2. Ligas ferroníquel. 3. Decomposição térmica. 4. Redução por hidrogênio. 5. Propriedades magnéticas. I. Moura, Francisco José. II. Brocchi, Eduardo de Albuquerque. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Ciência dos Materiais e Metalurgia. IV. Título.

CDD: 669

Agradecimentos

Ao meu orientador Professor Francisco José Moura pelo estímulo para a realização deste trabalho, por sua amizade e grande vontade de me ajudar em todos os momentos, e ao meu co-orientador Professor Eduardo de Albuquerque Brocchi por ter me permitido trabalhar nesta linha de pesquisa.

À CAPES, CNPq e à PUC-Rio pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Ao Professor Guillermo Solórzano por sua amizade e pelas análises em microscopia eletrônica de transmissão.

Ao Professor Roberto Ribeiro de Avillez e ao Ronaldo da Silva pelas analises por Difração de Raios-X tão importantes para o conteúdo deste trabalho

Ao Professor Antonio Carlos Bruno e ao aluno de mestrado Jefferson Ferraz do Departamento da Física, Grupo de Materiais Magnéticos, pelas medições das propriedades magnéticas.

Ao Professor Mohammed Elmassalami e ao aluno de doutorado Ricardo Moreno, do Instituto de Física da UFRJ, pelas medições das propriedades magnéticas das ligas ferroníquel.

A os professores que contribuíram para a minha formação acadêmica no programa de Pós-graduação do DCMM.

Um agradecimento muito especial a minha família que sempre me incentivou e apoiou em todos os momentos.

Resumo

Cortez, Orfelinda Avalo; Moura, Francisco José; Brocchi, Eduardo de Albuquerque. **Síntese e caracterização de ligas Fe-Ni nanoestruturadas.** Rio de Janeiro, 2008. 171p. Tese de Doutorado - Departamento de Ciência dos Materiais e Metalurgia, Pontificia Universidade Católica do Rio de Janeiro.

Oxido de níquel e hematita nanoestruturadas foram sintetizadas a partir da decomposição térmica de nitrato de níquel hexahidratado e nitrato férrico nonahidratado respectivamente, na faixa de temperatura de 350-450°C com variações no tempo reacional. Os tamanhos de cristalito do NiO e Fe₂O₃ foram estimados a partir dos difractogramas de Difração de Raios-X (XRD) utilizando os software PowderCell e Topas. Foi observado que o tamanho de cristalito varia em função da temperatura de sínteses. O resultado mais significante foi observado nos cristalitos de NiO os quais aumentam de 31 nm (T=350°C, 3hr) a 98 nm (T=450°C, 5hr). Foram realizados estudos cinéticos da redução NiO e Fe₂O₃ por hidrogênio na faixa de temperatura de 250-600°C. Ligas ferroníquel nanoestruturadas com composições Fe_xNi_{100-x} (x = 25, 50, and 75 w%) têm sido preparadas com sucesso por decomposição térmica de nitratos (formação de óxidos) e posterior redução com hidrogênio a 700°C (formação das ligas). As ligas Fe-Ni, caracterizadas por difração de raios-X mostraram tamanhos de cristalito da ordem de 25nm. A fase rica em Ni, liga Fe₂₅Ni₇₅, apresentou uma estrutura γ (FCC). A liga Fe₅₀Ni₅₀ apresentou a existência de uma estrutura tetragonal. A fase rica em Fe, liga Fe₇₅Ni₂₅, contém uma mistura de fases $\alpha(BCC)$ e $\gamma(FCC)$. A coexistência das fases e atribuída à segregação de fases que acontece nestas ligas como resultado da difusão atômica. A partir dos resultados das medições magnéticas efetuadas a 300K, pode-se estabelecer que as ligas Fe-Ni nanoestruturadas tem um comportamento superparamagnético.

Palavras-chave

Ligas ferroníquel; decomposição térmica; redução por hidrogênio, propriedades magnéticas.

Abstract

Cortez, Orfelinda Avalo; Moura, Francisco José (Advisor); Brocchi, Eduardo de Albuquerque (Co-advisor). **Synthesis and characterization of nanostructured iron-nickel alloys.** Rio de Janeiro, 2008. 171 p. Doctor Thesis - Departamento de Ciência dos Materiais e Metalurgia, Pontificia Universidade Católica do Rio de Janeiro.

Nickel oxide and hematite nanostructured were successfully prepared by thermal decomposition from nickel nitrate hexahydrate and ferric nitrate nonahydrate in the temperature range of 350-450°C with variation of the time. The average crystallite sizes of NiO and Fe₂O₃ were estimated from X-ray diffraction (XRD) peaks using the PowderCell and Topas software. We observed that the crystallite size changes as a function of synthesis temperature. The significant result was the large size of the resulting NiO crystallites, which increased from 31nm (T=350°C, 3hr) to 98nm (T=450°C, 5hr). Kinetic studies of the reduction of NiO and Fe_2O_3 by hydrogen in the temperature range 250-600°C have been investigated. Nanostructured Fe-Ni alloys with compositions Fe_xNi_{100-x} (x = 25, 50, and 75 w%) have been successively prepared by thermal decomposition from mixtures of nitrates (formation of oxides) and reduction by hydrogen at 700°C (formation of alloys). The Fe-Ni alloys, characterized by X-ray diffraction show crystallites sizes about 25nm. The Nirich phase, Fe₂₅Ni₇₅ alloys show the existence of γ (FCC) phase. The Fe₅₀Ni₅₀ alloy show the existence of tetragonal phase. The Fe-rich phase, Fe₇₅Ni₂₅ alloy, contain a mixture of $\alpha(BCC)$ and $\gamma(FCC)$ phases. The coexistence of these phases is attributed to phase segregation occurring in these alloys as a result of enhanced atomic diffusion. It was inferred from results of magnetic measurements at 300K, that nanostructured Fe-Ni alloys were in a superparamagnetic state.

Keywords

Iron-Nickel alloys; thermal decomposition; reduction by hydrogen; magnetic properties.

Sumário

1. Introdução	21
2. Justificativa e relevância do tema	23
3. Revisão da literatura	24
3.1. Ferro, níquel e ligas ferroníquel	24
3.2. Nanotecnologia	28
3.2.1. Materiais nanoestruturados	30
3.3. Aplicações dos materiais magnéticos nanoestruturados	32
3.4. Síntese para a obtenção de nanopartículas	35
3.4.1. Síntese de nanopartículas de NiO, Fe ₂ O ₃ , Ni e Fe metálicos e as suas ligas	38
3.4.2 Propriedades magnéticas do Ni, Fe e suas ligas	51
4. Considerações teóricas	54
4.1. Decomposição térmica de nitratos	54
4.2. Aspectos teóricos da cinética de reações heterogêneas	58
4.3. Redução dos óxidos pelo hidrogênio	62
4.3.1. Aspectos Termodinâmicos da redução do NiO	62
4.3.2. Aspectos Teóricos da Cinética da redução do NiO pelo H_2	63
4.3.3. Aspectos Termodinâmicos da redução da Hematita	64

4.3.4. Aspectos Teóricos da Cinética da redução da Hematita pelo H_2	68
4.4. Formação das ligas ferroníquel	70
4.4.1. Diagrama de Fases: Sistema Fe-Ni	70
4.4.2. Soluções Sólidas	72
4.4.3. Mecanismo de difusão substitucional ou por lacunas	73
4.5. Materiais Magnéticos	74
4.5.1. Unidades e termos magnéticos	74
4.5.2. Tipos de comportamento magnético	76
4.5.3. Histerese magnética	78
4.5.4. Domínios magnéticos	79
4.5.5. Anisotropia magnética	80
4.5.6. Superparamagnetismo	81
5. Metodologia experimental	84
5.1. Sínteses	84
5.1.1. Síntese das nanopartículas de NiO, Fe ₂ O ₃ e suas misturas via processo de decomposição térmica	84
5.1.1.1. Reagentes	85
5.1.1.2. Soluções	85
5.1.1.3. Procedimento experimental	87
5.1.2. Redução dos óxidos pelo hidrogênio	89
5.1.2.1. Procedimento experimental	90
5.2. Técnicas de caracterização	92
5.2.1. Difração de raios X (DRX)	92
5.2.2. Microscopia Eletrônica de Transmissão (MET)	93

5.2.3. Método por FIB (Focused Íon Beam)	93
5.2.4. Medidas de Magnetização	94
6. Resultados e Discussões	96
6.1. Síntese das nanopartículas de NiO e Fe ₂ O ₃ isoladamente	96
6.1.1. Influência da temperatura na formação dos óxidos	96
6.1.2. Influência do tempo na formação dos óxidos	102
6.2. Síntese das nanopartículas de NiO e Fe $_2O_3$ co-dissociados	105
6.2.1. Síntese da mistura A: 26,84%Fe ₂ O ₃ -73,13%NiO	106
6.2.2. Síntese da mistura B: 52,88%Fe ₂ O ₃ - 47,12%NiO	107
6.2.3. Síntese da mistura C: 76,75%Fe ₂ O ₃ – 23,25%NiO	109
6.2.4. Caracterização das misturas de óxidos por Difração de Raios-X	109
6.2.5. Caracterização da mistura de óxidos por microscopia eletrônica de transmissão (MET)	111
6.3. Etapa de Redução dos óxidos pelo hidrogênio	116
6.3.1. Redução do oxido de níquel, NiO	117
6.3.2. Redução da hematita, Fe_2O_3	123
6.3.3. Redução das misturas de óxidos para a obtenção das ligas ferroníquel	125
6.3.4. Caracterização dos produtos obtidos após a redução	137
6.3.5. Influencia do aumento da temperatura na redução dos óxidos	139
6.3.6. Influencia do tipo de gás de resfriamento na redução dos óxidos	142
6.3.7. Caracterização por Microscopia Eletrônica das ligas	145
6.4. Estudo das Propriedades Magnéticas	150

6.4.1. Propriedades magnéticas do Ni nanoestructurado obtido da etapa de redução	150
6.4.2. Propriedades magnéticas do Fe nanoestructurado obtido da etapa de redução	152
6.4.3. Propriedades magnéticas das ligas ferroníquel nanoestruturada obtidas da etapa de redução	153
7. Conclusões	156
8. Sugestões para trabalhos posteriores	158
9. Referências bibliográficas	159
Apêndice 1: Nitrato de Niquel hexahidratado	169
Apêndice 2: Nitrato Férrico nonahidratado	171

Lista de figuras

Figura 3.1-Comparação esquemática das distintas escalas dimensionais	29
Figura 3.2-Solução de partículas nanométricas de ouro em água	30
Figura 3.3-Visão do estudo dos materiais nanoestruturados	31
Figura 3.4-Exemplos de aplicação de materiais magnéticos	33
Figura 3.5-Subministro local de fármacos mediante nanopartículas magnéticas	34
Figura 3.6-Nanopartículas de ferro utilizadas para remediação de aqüíferos	35
Figura 3.7-Curvas TGA para os nitratos hidratados em ar	39
Figura 3.8-Diagrama esquemático do processo spray pirólise a baixa pressão	43
Figura 3.9-Imagem MEV das nanopartículas de óxido de níquel	44
Figura 3.10-Micrografia do NiO obtido por síntese de sais fundidas a 1000 °C	45
Figura 3.11-Imagens TEM de duas amostras preparadas em dois solventes diferentes:(a) amostra preparada em solvente aquoso e (b) amostra preparada em solvente etanol.	46
Figura 3.12-Mudança morfológica das amostras (a) antes e (b) depois da redução com $\rm H_2$	48
Figura 3.13-Imagens TEM do nanocompósito Al₂O₃/Ni (a) antes e (b) depois da sinterização	48

Figura 3.14-Imagens obtidas no MET do Ni-Al₂O₃(0,5 %Peso). (a) 49 imagem em campo claro mostrando cristais de Ni difratando;(b) imagem em campo escuro centrado, destacando um monocristal de Ni de mais ou menos 100 nm.

Figura 3.15-HRTEM (Microscopia Eletrônica de Transmissão de Alta 50 Resolução) das nanopartículas magnéticas.

Figura 3.16-Imagens em MET em campo claro (a), campo escuro 51 centrado; (b) de nanopartículas de NiO 20nm

Figura 4.1-Diagrama de Ellingham da dissociação no nitrato de níquel 55 hexahidratato (HSC)

Figura 4.2-Decomposição térmica do Ni(NO₃)₂.6H₂O via emissão de 55 N₂(g).(HSC)

Figura 4.3-Decomposição térmica do $Ni(NO_3)_2.6H_2O$ via emissão de 56 $NO_2(g)$. (HSC)

Figura 4.4-Diagrama de composição no equilíbrio da decomposição do 56 nitrato de níquel hexahidratado a temperaturas menores que 300°C.(HSC)

Figura 4.5-Representação Esquemática da Estrutura do a) NiO e b) 57 Fe_2O_3

Figura 4.6-Desenho esquemático de uma reação que segue o modelo 58 topoquímico

Figura 4.7-Desenho esquemático de uma reação que segue o modelo 59 reação contínua

Figura 4.8-Diagrama de Ellingham para a redução do NiO pelo H₂(g) 62

Figura 4.9-Diagrama de predominância do sistema Ni-H-O para PH₂= 63 1atm

Figura 4.10 - Diagrama de Chaudron para o equilibrio Fe-H-O e Ni-H- 65 O a 1 atm

Figura 4.11-Diagrama de predominância do sistema Fe-H-O para 67 PH₂=1atm.

Figura 4.12-Diagrama de Estabilidade de fases para o sistema 68 Fe-O-H a diferentes temperaturas

Figura 4.13-Diagrama de fases do Sistema Binário Fe-Ni levantado 70 com o Software Thermo-Calc M

Figura 4.14-Diagrama de fases do Sistema Binário Fe-Ni 71

Figura 4.15-Ilustração do tipo de mecanismo de difusão substitucional ou por lacuna	73
Figura 4.16-Esquema do fenômeno magnético num cristal 1D	77
Figura 4.17-Esquema de uma curva de histerese de um material magnético	78
Figura 4.18-Representação de uma partícula multidomínio (D>Dc) e mono-domínio (D <dc)< td=""><td>79</td></dc)<>	79
Figura 4.19-Ordenamento magnético no α-Fe, Ni(FCC)	80
Figura 4.20-Curvas de histerese típicas de um material ferromagnético, paramagnético e superparamagnético	83
Figura 5.1- Arranjo experimental do processo de obtenção de óxidos por decomposição térmica	85
Figura 5.2-Preparação da solução contendo os nitratos isoladamente	86
Figura 5.3-Preparação da solução contendo as misturas de nitratos.	86
Figura 5.4-Curvas de velocidades de aquecimento e resfriamento durante a etapa de dissociação	88
Figura 5.5-Diagrama ilustrativo da rota de síntese das nanopartículas de óxidos via processo de decomposição térmica dos seus nitratos	88
Figura 5.6- Sistema experimental utilizado na etapa de redução dos óxidos	89
Figura 5.7- Curvas de aquecimento e resfriamento durante a etapa de redução	91
Figura 5.8- Equipamento experimental utilizado na redução de óxidos	91
Figura 5.9 - Eletroímã (Física – PUC-Rio)	94
Figura 5.10 - Magnetómetro de amostra vibrante (IF-UFRJ)	95
Figura 6.1-Seqüência do processo de decomposição térmica dos nitratos.	97
Figura 6.2-Fotografia dos pós obtidos da dissociação do Ni(NO ₃) ₂ .6H ₂ O	98

Figura 6.3 - Difratograma do pó produzido a partir da dissociação do 98 $Ni(NO_3)_2.6H_2O$ a $400^{\circ}C$

Figura 6.4 - Difratogramas dos pós obtidos a partir da decomposição 99 térmica do Ni(NO₃)₂.6H₂O a diferentes temperaturas.

Figura 6.5- Fotografia do pó obtidos da dissociação do Fe(NO₃)₃.9H₂O 100

Figura 6.6 - Difratograma do pó produzido a partir da dissociação do 101 $Fe(NO_3)_3.9H_2O$ a 400°C

Figura 6.7 - Difratogramas dos pós obtidos a partir do $Fe(NO_3)_3.9H_2O$ 102 a diferentes temperaturas e para um tempo reacional de 3 hr.

Figura 6.8 - Difratogramas dos pós obtidos a partir da decomposição 103 térmica do Ni(NO₃)₂.6H₂O a diferentes tempos

Figura 6.9- Difratogramas dos pós obtidos a partir da decomposição 104 térmica do Fe(NO₃)₃.9H₂O a diferentes tempos

Figura 6.10-Gráfico comparativo da influencia da temperatura nos 104 tamanhos de cristalito do NiO e do Fe_2O_3 para um tempo reacional de 3 hr

Figura 6.11-Gráfico comparativo da influencia do tempo nos tamanhos 105 de cristalito do NiO e do Fe_2O_3 para uma temperatura de 400°C.

Figura 6.12 -Fotografias dos pós obtidos da dissociação da mistura de 107 Ni(NO₃)₂.6H₂O e Fe(NO₃)₃.9H₂O produzindo a *mistura A*.

Figura 6.13-Difratogramas dos pós obtidos a partir da mistura de 108 nitratos para produzir a *mistura B* a diferentes temperaturas e para um tempo reacional de 3 hr.

Figura 6.14- Fotografias dos pós obtidos da dissociação da mistura de 108 (NO₃)₂.6H₂O e Fe(NO₃)₃.9H₂O produzindo a *Mistura B*

Figura 6.15 - Fotografias dos pós obtidos da dissociação da mistura 109 de Ni(NO₃)₂.6H₂O e Fe(NO₃)₃.9H₂O produzindo a *mistura C*.

Figura 6.16-Difratogramas dos padrões NiO, Fe_2NiO_4 e Fe_2O_3 , 110 utilizados para o ajuste dos difratogramas das *misturas* $A, B \in C$

Figura 6.17-Difratogramas das *misturas* $A,B \in C$ obtidas a uma 110 temperatura de dissociação de 450°C e 3 hr.

Figura 6.18- Micrografia MET da *mistura A3*. (a) imagem multi-beam e 112 (b) padrão de difração.

Figura 6.19-Micrografia MET de uma região da *mistura A3.* (a) 113 imagem multi-beam (b) padrão de difração (c) imagem em campo escuro

Figura 6.20-Analise por EDS da uma das partículas de maior tamanho 113

Figura 6.21-Micrografia MET de uma região de nanopartículas 114 (<20nm)

Figura 6.22-Analise por EDS da região contendo as partículas de 114 menor tamanho (<20nm)

Figura 6.23- Micrografia MET de uma partícula de 20nm de tamanho 115

Figura 6.24- Analise por EDS da partícula de 20nm 115

Figura 6.25- Progresso da redução de NiO por H_2 em função da 117 temperatura para PH_2 =1 atm

Figura 6.26- Efeito da temperatura sobre (ln (x/1-x)) <u>vs</u> t ,segundo 118 Modelo Autocatalítico

Figura 6.27 - Efeito da temperatura sobre $(1 - (1-x)^{1/3})$ <u>vs</u> t ,segundo 119 Modelo Topoquímico

Figura 6.28- Efeito da temperatura sobre (- ln (1-x)) <u>vs</u> t ,segundo 119 Modelo de Reação Continua

Figura 6.29- Efeito da temperatura sobre $(1 - (1-x)^{1/3})^2)$ <u>vs</u> t segundo 120 Modelo de Difusão de Jander.

Figura 6.30- Efeito da temperatura sobre (- ln (1-x))^{1/3} vs t ,segundo 120 Modelo de Nucleação Aleatória de Avrami,II.

Figura 6.31- Efeito da temperatura sobre $(1-3(1-x)^{2/3}+2(1-x))$ vs t, 121 segundo Modelo de Difusão Tridimensional.

Figura 6.32- Efeito da temperatura sobre $(1 - 2/3x - (1 - x)^{2/3})$ vs t, 121 segundo Modelo de Difusão Tridimensional de Ginstling-Brounshtein

Figura 6.33- Gráfico Ink vs 1/T , segundo o Modelo de Difusão 122 Tridimensional de Ginstling-Brounshtein, para PH₂= 1atm Figura 6.34- Progresso da redução do Fe_2O_3 por H_2 , em função da 123 temperatura para $PH_2=1$ atm.

Figura 6.35- Efeito da temperatura sobre (ln (x/1-x)) vs. t, segundo 124 Modelo Autocatalítico para a redução da hematita por hidrogênio

Figura 6.36-Gráfico lnk vs 1/T, segundo o Modelo Autocatalítico, para 124 PH₂=1atm

Figura 6.37-Progresso da redução da *mistura* A por H₂ em função da 126 temperatura para PH₂=1 atm

Figura 6.38- Efeito da temperatura sobre (1-3(1-x)^{2/3}+2(1-x)) vs. t, 127 segundo Modelo de Difusão Tridimensional, para a redução da mistura A

Figura 6.39-Efeito da temperatura sobre (1-2/3x-(1-x)^{2/3}) vs. t, 127 segundo Modelo de Difusão Tridimensional de Ginstling-Brounshtein, para a redução da mistura A

Figura 6.40-Gráfico Ink vs 1/T, segundo o Modelo de Difusão 128 Tridimensional, para PH2=1atm

Figura 6.41-Gráfico Ink vs 1/T, segundo o Modelo de Difusão 128 Tridimensional de Ginstling-Brounstein, para PH2=1atm.

Figura 6.42-Progresso da redução da *mistura B* por H_2 em função da 130 temperatura para $PH_2=1$ atm.

Figura 6.43- Efeito da temperatura sobre (ln (x/1-x)) vs. t, segundo 130 Modelo Autocatalítico, para a redução da mistura B.

Figura 6.44 - Efeito da temperatura sobre (- ln (1-x))^{1/3} vs. t, segundo 131 Modelo de Nucleação Aleatória de Avrami II, para a redução da mistura B

Figura 6.45- Gráfico lnk vs 1/T, segundo o Modelo Autocatalítico, 131 para PH_2 =1atm

Figura 6.46- Gráfico Ink vs 1/T, segundo o Modelo de Nucleação 132 Aleatoria de Avrami II, para PH₂=1atm.

Figura 6.47-Progresso da redução da *mistura* C por H_2 em função da 133 temperatura para $PH_2=1$ atm.

Figura 6.48-Efeito da temperatura sobre (ln (x/1-x)) vs. t, segundo 134 Modelo Autocatalítico, para a redução da mistura C. Figura 6.49- Efeito da temperatura sobre (- ln (1-x))^{1/3} vs. t, segundo 134 Modelo de Nucleação Aleatória de Avrami II, para a redução da mistura B.

Figura 6.50-Gráfico lnk vs 1/T, segundo o Modelo Autocatalítico, para 135 PH₂=1atm.

Figura 6.51-Gráfico Ink vs 1/T, segundo o Modelo de Nucleação 135 Aleatoria de Avrami II, para PH₂=1atm

Figura 6.52-Difratogramas DRX dos produtos obtidos após da 137 redução do NiO por H_2

Figura 6.53-Progresso da redução do Fe₂O₃ pelo H₂ 138

Figura 6.54- Difratogramas comparativos: (a) difratograma padrão da 139 liga FeNi₃; (b) difratograma da redução a 600° C e 60 min; (c) difratograma da redução a 700° C e 90 min.

Figura 6.55- Difratogramas comparativos: (a) difratograma padrão da 140 liga FeNi; (b) difratograma da redução a 600°C e 60 min; (c) difratograma da redução a 700°C e 90 min.

Figura 6.56- Difratogramas comparativos: (a) difratograma padrão da 141 liga Fe₃Ni; (b) difratograma da redução a 600°C e 60 min; (c) difratograma da redução a 700°C e 90 min.

Figura 6.57- Difratogramas comparativos: (a) difratograma padrão do 142 Fe- α (b) difratograma da redução a 600°C e 60 min; (c) difratograma da redução a 700°C e 90 min

Figura 6.58- Difratogramas comparativos: (a) difratograma padrão da 143 liga FeNi₃; (b) difratograma da redução a 700°C e 90 min sob resfriamento em argônio; (c) difratograma da redução a 700°C e 90 min sob resfriamento em hidrogênio

Figura 6.59- Difratogramas comparativos: (a) difratograma padrão da 143 liga FeNi; (b) difratograma da redução a 700°C e 90 min sob resfriamento em argônio; (c) difratograma da redução a 700°C e 90 min sob resfriamento em hidrogênio

Figura 6.60- Difratogramas comparativos: (a) difratograma padrão da 144 liga Fe₃Ni; (b) difratograma da redução a 700° C e 90 min sob resfriamento em argônio; (c) difratograma da redução a 700° C e 90 min sob resfriamento em hidrogênio.

Figura 6.61 -Difratogramas comparativos: (a) difratograma padrão do 144 Fe- α ; (b) difratograma da redução a 700°C e 90 min sob resfriamento em argônio; (c) difratograma da redução a 700°C e 90 min sob resfriamento em hidrogênio.

Figura 6.62-Imagens FIB da liga Fe₃Ni mostrando a morfologia da 146 superficie com vistas lateral e frontal

Figura 6.63-Imagem FIB da liga Fe3Ni mostrando a morfologia da 146 superfície da amostra, vista frontal (E-beam 15kV)

Figura 6.64-Imagens FIB mostrando particulas parcialmente 147 sinterizadas e porosidade na amostra

Figura 6.65-Imagens FIB da morfologia da liga FeNi_{3.} 148

Figura 6.66-Amplificação de uma região da imagem FIB da 148 morfologia da liga FeNi3

Figura 6.67-Imagen FIB da liga FeNi₃ mostrando camadas 149 superpostas.

Figura 6.68-Curvas de histerese obtida à temperatura ambiente para 151 o Ni convencional.

Figura 6.69-Curva de histerese obtida à temperatura ambiente para a 151 amostra Ni nanoestructurado

Figura 6.70 - Curva de histerese obtida à temperatura ambiente para 153 a amostra Fe nanoestructurado

Figura 6.71-Curva de histerese obtida à temperatura ambiente para 154 as ligas ferroníquel nanoestruturadas

Lista de tabelas

Tabela 3.1 - Resultados da difração de raios-X	39
Tabela 4.1 - Dados cristalográficos para as ligas ferroníquel e elementos metálicos Fe e Ni.	72
Tabela 4.2 - Valores de parâmetros do Fe e Ni que influem na formação da solução sólida	73
Tabela 4.3 - Quantidades e unidades magnéticas	75
Tabela 5.1 - Reagentes usados nos procedimentos experimentais	85
Tabela 5.2 - Proporções de reagentes necessários para a obtenção dos óxidos e dos produtos finais	87
Tabela 6.1 - Resultados da dissociação do Ni(NO ₃) ₂ .6H ₂ O a diferentes temperaturas	96
Tabela 6.2- Valores do tamanho de cristalito calculados pelo Powder Cell	99
Tabela 6.3- Resultados da dissociação do Fe(NO ₃) ₃ .9H ₂ O a temperaturas diferentes.	100
Tabela 6.4 - Resultados da dissociação do Fe(NO ₃) ₃ .9H ₂ O	101
Tabela 6.5 - Valores do tamanho de cristalito do Fe_2O_3 , calculados com o software Powder Cell 2.4	101
Tabela 6.6 - Resultados da dissociação do Ni(NO ₃) ₂ .6H ₂ O a maior tempo reacional.	102
Tabela 6.7 - Valores do tamanho de cristalito calculados com o software Powder Cell 2.4 a diferentes tempos reacionais.	103
Tabela 6.8 - Quantidades iniciais de nitratos necessárias para produzir as misturas de óxidos com composições específicas.	106

Tabela 6.9 - Resultados da dissociação para a síntese da mistura A	106
Tabela 6.10 - Resultados da dissociação de nitratos para produzir a <i>mistura B,</i>	107
Tabela 6.11- Resultados da dissociação da mistura 25% Fe-75% Ni	109
Tabela 6.12 - Composição das misturas de óxidos, obtidas a 450ºC e 3hr de tempo reacional.	111
Tabela 6.13 - Influência da temperatura na dissociação da Mistura B.	111
Tabela 6.14 - Influência da temperatura na dissociação da Mistura A.	111
Tabela 6.15- Resultados obtidos do processo da redução do NiO por H_2	117
Tabela 6.16-Resultados obtidos do processo da redução do Fe_2O_3 por H_2	123
Tabela 6.17- Resultados obtidos do processo da redução da <i>mistura A</i> por H_2 para obter FeNi ₃	126
Tabela 6.18- Valores de energia de ativação encontrados para a redução da <i>mistura A</i> para P _{H2} =1atm	129
Tabela 6.19- Resultados obtidos do processo da redução da <i>mistura B</i> por H ₂ para obter FeNi	129
Tabela 6.20 - Valores de energia de ativação encontrados para a redução da <i>mistura B</i> para P _{H2} =1atm	132
Tabela 6.21- Resultados obtidos do processo da redução da <i>mistura C</i> por H ₂ para obter Fe ₃ Ni	133
Tabela 6.22- Valores de energia de ativação encontrados para a redução da <i>mistura C</i> para P _{H2} =1atm	136
Tabela 6.23- Parâmetros magnéticos do Ni convencional (solido <i>bulk</i>) a 300K.	150
Tabela 6.24- Parâmetros magnéticos do Fe convencional (solido <i>bulk</i>), a 300K.	152

Tabela 6.27- Parâmetros magnéticos das ligas ferroniquel convencionais,153a 300K